

Durelloy es una aleación de acero horno eléctrico con un buen balance de granos finos y un endurecimiento por tratamiento térmico de 28–32 Rockwell C. Durelloy es fabricado para aplicaciones donde se requieren altas stress, resistencia al desgaste, impacto y fatiga. Cada proceso de calentamiento debe pasar rigurosos procedimientos de controles de calidad que aseguran sus propiedades de consistente físicas y químicas.

En sus condicion iniciales de tratamiento térmico Durelloy es excelente para aplicaciones que requieren altos torques y tensiones torsionales. La combinación de Níquel, Cromo, Molibdeno y Manganeso produces excelentes propiedades físicas, profundidad de tratamiento térmico, resistencia a muchas formas de corrosión, con excelente dureza y buena ductilidad.

Durelloy sustituye tanto el carbón y los grados estándar de aleación de aceros.

Grados de Carbón	Grados cromo-moly	Grados cromo-níquel-moly
C10xx*	41xx*	43xx*
C11xx		47xx
C12xx	Grados níquel-moly	81xx
	46xx	86xx
	48xx	87xx
		88xx
	Grados níquel-cromo	93xx
	31xx	98xx
	33xx	

 $^{^{*}\,}xx$ indicador de la cantidad de carbón contenido.

Aleaciones de acero se comercializan bajo diferentes listas de nombres comerciales y son muy extensas. Contacte a sus representante de Ameralloy ó la oficina central de ventas al 847-967-0600 para asistencia y dudas.

Durelloy elementos Durelloy es una aleación balanceada y producida en pequeños hornos de calentamiento eléctrico

- Carbón (C) Principal elemento endurecedor; pone limite a la soldabilidad.
- Manganeso (MN) Elemento que contribuye a la dureza y resistencia
- Silicio (SI) Principal desoxidante
- Molibdeno (MO) Elemento que contribuye a la dureza y resistencia del crecimiento del grano
- **Cromo (CR)** Elemento principal que profundiza la dureza y resistencia al desgaste
- Níquel (NI) Elemento principal para fuerza y dureza
- Vanadio (V) Elemento principal que asiste la formación de micro estructuras finas de carburo

Aplicaciones

- Leva
- Armadura eje
- Axles
- Pernos & pasador
- Barra de mecanizado
- Bujes
- Ejes mezclador cemento
- Eslabón de cadena & pin
- Eje de transportador
- Rodillo de transportador
- Eje de grúa
- Cigüeñales
- Cuerpo de broca de perforación
- Eje de transmisión & engranaje
- Tornillos de alimentación
- Partes endurecidas por flama
- Piñones
- Eje de engranaje
- Eje de martillo
- Eje de cardan
- Ganchos
- Cubos

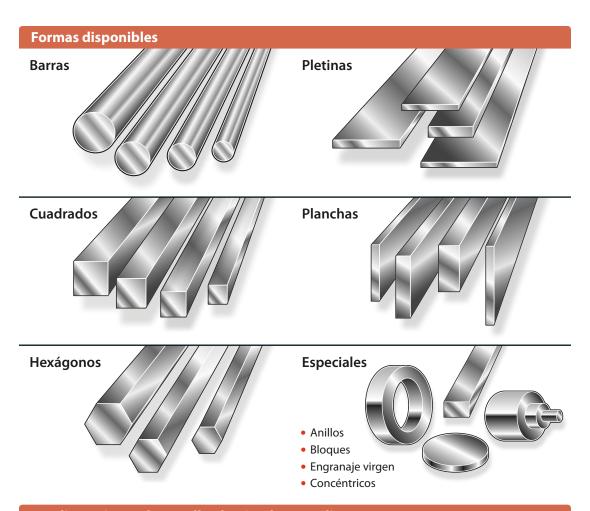
- Eje de impeler
- Varios
- Tornillos de plomo
- Eje de línea
- Equipos de minería
- Eje de motor
- Mandril
- Tuercas
- Piñones
- Agujas
- Pistón y barras de empuje
- Eje de potencia de excavador
- Ejes de bombas & barras
- Eies
- Husos
- Sprockets
- Tachones
- Equipo Textil
- Barra de Lazo
- Herramientas principales
- Pistas
- Pista de alfiler
- Pernos en U.

Características y ventajas

- Pre-endurecido, tratado térmicamente, alivio de tensión
- Formado a maquina para minimizar distorsión
- Micro estructura de grano fino
- Libre mecanizado 75% maquinabilidad
- Endurecimiento por trabajo
- Resistente a la fatiga
- Alto concentrador de fuerzas, resistente a la abrasión
- Preciso control de análisis
- Propiedades se mantienen excelente por encima de los 1100° F

Durelloy especiales

- Carbón .35/.42
- Silicio .25/.32
- Molibdeno .15/.30
- Vanadio .01/.04
- Manganeso .78/1.10
- Cromo .75/1.09
- Níquel 1.70/1.95


Tratamientos térmicos, mecanizados y aceros especiales:

- Durelloy pletinas pre-mecanizada Espesor de 1/2 a 2", anchos desde 2 a 24", largo 72". Blanchard superior e inferior TOL superior a .020-.030
- Durelloy tratamiento térmicos especiales
- Durelloy templados Todos los tamaños de durelloy están disponibles con temple
- Durelloy forja Forjamos a las especificaciones del cliente
- Mecanizado y esmerilado por Ameralloy

Formas y dimensiones

Las dimensiones de Durelloy laminados en caliente disponible para entrega inmediata

Barras			Cuadrados	Hexágonos	Pletinas			Planchas
1/2	3-1/8	7-1/4	1-1/4	3/8	1/2 x 2	1-1/8 x 2-1/2	x 3-1/2	3/8 x 96 x 120
5/8	3-1/4	7-1/2	1-1/2	1/2	x 3	x 4-1/2	2 x 4	1/2 x 96 x 120
3/4	3-3/8	7-3/4	1-3/4	5/8	x 4	1-1/4 x 2	x 4-1/2	3/4 x 96 x 120
7/8	3-1/2	8	2	3/4	5/8 x 3	x 2-1/2	x 5	1 x 96 x 120
1	3-5/8	8-1/4	2-1/4	7/8	x 2-1/2	x 3	x 6	1-1/4 x 96 x 120
1-1/8	3-3/4	8-1/2	2-1/2	1	x 3	x 3-1/2	x 8	1-1/2 x 96 x 120
1-1/4	4	8-3/4	2-3/4	1-1/8	x 4	x 4	2-1/2 x 3	2 x 96 x 120
1-3/8	4-1/8	9	3	1-1/4	x 4-1/2	x 4-1/2	x 3-1/2	2-1/2 x 96 x 120
1-1/2	4-1/4	9-1/2	3-1/2	1-3/8	3/4 x 1	x 5	x 4	3 x 96 x 120
1-5/8	4-3/8	10	4	1-1/2	x 2	х б	x 4-1/2	3-1/2 x 96 x 144
1-3/4	4-1/2	10-1/2	4-1/2	1-5/8	x 3	x 8	x 5	4 x 96 x 144
1-7/8	4-3/4	11	5	1-3/4	x 4	1-1/2 x 2	хб	5 x 96 x 144
2	5	11-1/4	5-1/2	2	1 x 1-1/2	x 2-1/2	x 8	6 x 96 x 144
2-1/8	5-1/4	11-1/2	6	2-1/8	x 2	x 3	3 x 4	8 x 96 x 144
2-1/4	5-1/2	12	8	2-1/4	x 2-1/2	x 3-1/2	x 5	
2-3/8	5-3/4	14		2-3/8	x 3	x 4	хб	
2-1/2	6	15-1/2		2-1/2	x 3-1/2	x 4-1/2	x 8	
2-5/8	6-1/4	16		2-3/4	x 4	x 5	3-1/2 x 8	
2-3/4	6-1/2	18		3	x 4-1/2	x 6	4 x 5	
2-7/8	6-3/4	20		3-1/4	x 5	x 8	хб	
3	7	24		3-1/2	x 6	2 x 2-1/2	x 8	
						x 3		

Longitudes: cortes de 18-20 para clientes.

Datos metalúrgicos

Propiedades mecánicas en condición de almacenamiento de tratamiento térmico					
Resistencia A La Tracción	Punto De Alargamiento	Alargamiento En 2"	Reducción De Área	Dureza Brinnell	Charpy V-Notch
155/172,000	140/155,000	21.0/18.0	62/54	312/330	60/25

Propiedades son típicas sobre la amplia gama de la sección de la dimensiones. Refiérase al siguiente diagrama.

Datos de revenido, tracción, alargamiento								
Dimensiones en pulgadas	Temperatura de revenido	Resistencia a la tracción	Punto de alargamiento	Alargamiento en 2"	Reducción de área	Dureza superficial	Charpy V-notch	Radio medio de dureza
1	AQ 800/427 1000/538 1200/649	— 246,500 198,250 166,500	234,000 189,500 154,750	12.5 18.5 20.5	— 48.5 58.0 60.8	698 480 412 302	— 13 22 54	698 480 412 302
2	AQ 800/427 1000/538 1200/649	238,750 202,000 164,000	 226,000 190,750 155,500	— 14.5 18.6 21.2	 52.5 59.0 61.5	660 469 412 340	— 15 22 56	660 469 412 340
4	AQ 800/427 1000/538 1200/649	 222,000 196,750 162,250	— 208,500 184,500 154,000	— 16.0 19.0 21.5	54.0 60.5 64.0	586 442 410 336		586 440 402 332
6	AQ 800/427 1000/538 1200/649	— 205,500 192,000 160,000	— 190,250 178,000 149,500	— 16.8 19.8 21.8	 55.0 61.8 64.6	498 408 398 330	— 24 27 62	488 398 390 326
8	AQ 800/427 1000/538 1200/649	— 198,750 190,500 154,500	— 183,500 172,500 146,250	— 18.2 20.5 22.0	 56.2 62.5 65.5	412 396 388 322	 24 28 68	396 390 380 316

Durelloy muestra de barras templadas en aceite desde 155° F (843° C)

Normalizado enfriamiento por aire desde 1550° – 1650° F (843° – 899° C)							
Dimensiones en pulgadas	Resistencia a la tracción	Punto de alargamiento	Alargamiento en 2"	Reducción de área	Dureza brinnell	Charpy v-notch	
1	214,500	176,000	15.3	53.7	402	13	
2	208,750	172,500	15.7	54.2	394	14	
4	198,000	165,750	16.5	55.1	376	16	
6	184,500	151,250	17.2	56.0	358	18	
8	168,000	138,500	17.8	56.4	332	20	
Recocido enfriamiento por aire lento desde 1600° F (871° C)							
1	116,250	84,500	28.5	68.2	210	81	

Instrucciones de trabajo

Puntos críticos						
Calentamiento	en 50° por hora	Enfriamiento e				
AC ¹	AC³	AR³	AR¹	Ms		
1360° F	1495° F	1350° F	1220° F	525° F		
738° C	813° C	732° C	660° C	274° C		

Forja

Calentamiento máximo a fondo de 2250° F (1232° C). Precalentar cuantas veces sea necesaria para terminar la operación de forja, no trabajar con temperaturas inferiores a 1550° F (816° C). Puede ser enfriado por aire (normalizado) puede ser apagado en aceite después de la Forja. Para máxima propiedad se recomiendo revenido antes de enfriar por debajo de 150° F (66° C). Consulte datos metalúrgicos para los resultados de las propiedades.

Recocido

Caliente y mantenga a 1500°–1600° F (816°–871° C) por 1 hora por pulgada del mayor espesor. Enfrié lentamente con aire a 500° F (260° C). Consulte datos metalúrgicos para los resultados de las propiedades.

Normalizado

Caliente a 1550°–1650° F (816°–871° C) a fondo deje enfriar al aire. Consulte datos Metalúrgicos para los resultados de las propiedades.

Templado

Calentamiento Caliente lento y uniforme a 1550°–1650° F (848°–899° C) por 1 hora por pulgada del mayor espesor a fondo.

Templado Temple en aceite preferiblemente agite en el medio para obtener uniformidad en la piezas de mayor tamaño, acelere al proceso de enfriamiento utilizando mas aceite de forma uniforme.

Revenido Todos los aceros poseen tensiones residuales y fragilidad después del proceso de Normalizado ò endurecimiento por Sofocado, cuando sea posible se puede usar el revenido para liberar están tensiones e impartir la dureza y tenacidad requerida. El Revenido consiste en calentar a la temperatura critica por debajo de

(AC1-1360° F) y sostenerla por tiempo de 1 hora por pulgada del mayor espesor de la pieza seguido por un enfriamiento al aire.

Inicie el revenido después de termina el proceso de templado enfrié por debajo de 150° F.

Durelloy se puede revenir en el rango de 300°–1300° F (149°–704° C), dependiendo de la aplicación y propiedades finales deseadas. (Desgaste Vs dureza).

A mas baja temperatura de revenido, mas alto es el resultado de dureza y resistencia al desgaste. A mas alta temperatura de revenido, mas bajo el resultado de dureza y mayor la combinación de fuerza y dureza

Propiedades de dureza para una probeta de .505" de diámetro, refrigerado en aceite desde una temperatura de 1550° F (843° C) son como se muestran:

Temperatura	Dureza	
° F	°C	Brinnell
300	149	612
500	260	548
700	371	498
900	482	439
1100	593	365
1300	704	289

Consulte *Datos metalúrgicos* para los resultados de las propiedades. Las propiedades optimas dependen de un adecuado proceso y las facilidades. Duralloy tratamiento térmico, debería utilizarse en lo posible bajo su presentación.